| Peer-Reviewed

Roles of Light-Harvesting Complex Stress-Related Proteins in the Stress Responses of Chlamydomonas

Received: 14 December 2021     Accepted: 30 December 2021     Published: 8 January 2022
Views:       Downloads:
Abstract

Light is very important for photosynthesis in plants. However, excess light can result in photodamage to the photosynthetic apparatus. Via nonphotochemical quenching (NPQ), the oxidative stress caused by excess light energy can be counteracted by photoprotective mechanisms that evolve photosynthetic/oxygenic organisms. Energy-dependent quenching (qE), as the major NPQ component, relies on the accumulation of specific proteins that are termed light-harvesting complex stress-related (LHCSR) proteins in microalgae and mosses. LHCSRs have been reported to participate in adaptation to diverse environmental stresses, including excess light. In this review, we discuss the identification of LHCSRs in Chlamydomonas and the basic biochemical properties and functions of LHCSRs in acclimation to environmental stresses such as excess light and salt stress. We further review the potential interactive factors and upstream regulators of LHCSRs in Chlamydomonas, aiming to explore the underlying mechanism of LHCSRs in adaptation to multiple environmental stresses. We also discuss the evolution of LHCSRs in green algae and mosses and tentatively speculate about their participation in the adaptation to environmental change of the Earth. Work on Chlamydomonas LHCSR could provide clues to analyze the roles of LHCSR in both green algae and mosses. Thus, we offer an overview of current knowledge on the characteristics and functions of Chlamydomonas LHCSRs, which could shed new light on their detailed studies in both green algae and moss in the future.

Published in Journal of Plant Sciences (Volume 10, Issue 1)
DOI 10.11648/j.jps.20221001.11
Page(s) 1-11
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Chlamydomonas, LHCSR, Adaptation, Environmental Stress, Evolution

References
[1] Nelson, N. & Ben-Shem, A. (2004). The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol, 5 (12), 971-82. doi: 10.1038/nrm1525.
[2] Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G. & Tredici, M. R. (2009). Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng, 102 (1), 100-12. doi: 10.1002/bit.22033.
[3] Zhu, X. G., Long, S. P. & Ort, D. R. (2010). Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol, 61 (235-61). doi: 10.1146/annurev-arplant-042809-112206.
[4] Stephenson, P. G., Moore, C. M., Terry, M. J., Zubkov, M. V. & Bibby, T. S. (2011). Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol, 29 (12), 615-23. doi: 10.1016/j.tibtech.2011.06.005.
[5] Peers, G., Truong, T. B., Ostendorf, E., Busch, A., Elrad, D., Grossman, A. R., Hippler, M. & Niyogi, K. K. (2009). An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature, 462 (7272), 518-21. doi: 10.1038/nature08587.
[6] van Amerongen, H. & Croce, R. (2013). Light harvesting in photosystem II. Photosynth Res, 116 (2-3), 251-63. doi: 10.1007/s11120-013-9824-3.
[7] Green, R. R. & Pichersky, E. (1994). Hypothesis for the evolution of three-helix Chl a/b and Chl a/c light-harvesting antenna proteins from two-helix and four-helix ancestors. Photosynth Res, 39 (2), 149-62. doi: 10.1007/bf00029382.
[8] Triantaphylidès, C. & Havaux, M. (2009). Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci, 14 (4), 219-28. doi: 10.1016/j.tplants.2009.01.008.
[9] Bonente, G., Ballottari, M., Truong, T. B., Morosinotto, T., Ahn, T. K., Fleming, G. R., Niyogi, K. K. & Bassi, R. (2011). Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol, 9 (1), e1000577. doi: 10.1371/journal.pbio.1000577.
[10] Gagné, G. & Guertin, M. (1992). The early genetic response to light in the green unicellular alga Chlamydomonas eugametos grown under light/dark cycles involves genes that represent direct responses to light and photosynthesis. Plant Mol Biol, 18 (3), 429-45. doi: 10.1007/bf00040659.
[11] Savard, F., Richard, C. & Guertin, M. (1996). The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol, 32 (3), 461-73. doi: 10.1007/bf00019098.
[12] Richard, C., Ouellet, H. & Guertin, M. (2000). Characterization of the LI818 polypeptide from the green unicellular alga Chlamydomonas reinhardtii. Plant Mol Biol, 42 (2), 303-16. doi: 10.1023/a:1006340308077.
[13] Li, X. P., Björkman, O., Shih, C., Grossman, A. R., Rosenquist, M., Jansson, S. & Niyogi, K. K. (2000). A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature, 403 (6768), 391-5. doi: 10.1038/35000131.
[14] Tibiletti, T., Auroy, P., Peltier, G. & Caffarri, S. (2016). Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light. Plant Physiol, 171 (4), 2717-30. doi: 10.1104/pp.16.00572.
[15] Ledford, H. K., Baroli, I., Shin, J. W., Fischer, B. B., Eggen, R. I. & Niyogi, K. K. (2004). Comparative profiling of lipid-soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-deficient mutant of Chlamydomonas reinhardtii. Mol Genet Genomics, 272 (4), 470-9. doi: 10.1007/s00438-004-1078-5.
[16] Miura, K., Yamano, T., Yoshioka, S., Kohinata, T., Inoue, Y., Taniguchi, F., Asamizu, E., Nakamura, Y., Tabata, S., Yamato, K. T., Ohyama, K. & Fukuzawa, H. (2004). Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol, 135 (3), 1595-607. doi: 10.1104/pp.104.041400.
[17] Zhang, Z., Shrager, J., Jain, M., Chang, C. W., Vallon, O. & Grossman, A. R. (2004). Insights into the survival of Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression. Eukaryot Cell, 3 (5), 1331-48. doi: 10.1128/ec.3.5.1331-1348.2004.
[18] Naumann, B., Busch, A., Allmer, J., Ostendorf, E., Zeller, M., Kirchhoff, H. & Hippler, M. (2007). Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics, 7 (21), 3964-79. doi: 10.1002/pmic.200700407.
[19] Maruyama, S., Tokutsu, R. & Minagawa, J. (2014). Transcriptional regulation of the stress-responsive light harvesting complex genes in Chlamydomonas reinhardtii. Plant Cell Physiol, 55 (7), 1304-10. doi: 10.1093/pcp/pcu068.
[20] Perozeni, F., Beghini, G., Cazzaniga, S. & Ballottari, M. (2020). Chlamydomonas reinhardtii LHCSR1 and LHCSR3 proteins involved in photoprotective non-photochemical quenching have different quenching efficiency and different carotenoid affinity. Sci Rep, 10 (1), 21957. doi: 10.1038/s41598-020-78985-w.
[21] Delwiche, C. F. & Cooper, E. D. (2015). The Evolutionary Origin of a Terrestrial Flora. Curr Biol, 25 (19), R899-910. doi: 10.1016/j.cub.2015.08.029.
[22] Kohzuma, K. & Hikosaka, K. (2018). Physiological validation of photochemical reflectance index (PRI) as a photosynthetic parameter using Arabidopsis thaliana mutants. Biochem Biophys Res Commun, 498 (1), 52-57. doi: 10.1016/j.bbrc.2018.02.192.
[23] Niyogi, K. K. (1999). PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. Annu Rev Plant Physiol Plant Mol Biol, 50 (333-359). doi: 10.1146/annurev.arplant.50.1.333.
[24] Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Müller, M., Holzwarth, A. R. & Jahns, P. (2010). Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta, 1797 (4), 466-75. doi: 10.1016/j.bbabio.2010.01.001.
[25] Caffarri, S., Frigerio, S., Olivieri, E., Righetti, P. G. & Bassi, R. (2005). Differential accumulation of Lhcb gene products in thylakoid membranes of Zea mays plants grown under contrasting light and temperature conditions. Proteomics, 5 (3), 758-68. doi: 10.1002/pmic.200402008.
[26] Färber, A. & Jahns, P. (1998). The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. Biochim Biophys Acta, 1363 (1), 47-58. doi: 10.1016/s0005-2728(97)00093-5.
[27] Morosinotto, T., Castelletti, S., Breton, J., Bassi, R. & Croce, R. (2002). Mutation analysis of Lhca1 antenna complex. Low energy absorption forms originate from pigment-pigment interactions. J Biol Chem, 277 (39), 36253-61. doi: 10.1074/jbc.M205062200.
[28] Dall'Osto, L., Lico, C., Alric, J., Giuliano, G., Havaux, M. & Bassi, R. (2006). Lutein is needed for efficient chlorophyll triplet quenching in the major LHCII antenna complex of higher plants and effective photoprotection in vivo under strong light. BMC Plant Biol, 6 (32). doi: 10.1186/1471-2229-6-32.
[29] Jahns, P., Latowski, D. & Strzalka, K. (2009). Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta, 1787 (1), 3-14. doi: 10.1016/j.bbabio.2008.09.013.
[30] Bugos, R. C., Hieber, A. D. & Yamamoto, H. Y. (1998). Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem, 273 (25), 15321-4. doi: 10.1074/jbc.273.25.15321.
[31] Goss, R. & Latowski, D. (2020). Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. Front Plant Sci, 11 (455). doi: 10.3389/fpls.2020.00455.
[32] Quaas, T., Berteotti, S., Ballottari, M., Flieger, K., Bassi, R., Wilhelm, C. & Goss, R. (2015). Non-photochemical quenching and xanthophyll cycle activities in six green algal species suggest mechanistic differences in the process of excess energy dissipation. J Plant Physiol, 172 (92-103). doi: 10.1016/j.jplph.2014.07.023.
[33] Masojídek, J., Kopecký, J., Koblízek, M. & Torzillo, G. (2004). The xanthophyll cycle in green algae (chlorophyta): its role in the photosynthetic apparatus. Plant Biol (Stuttg), 6 (3), 342-9. doi: 10.1055/s-2004-820884.
[34] Alboresi, A., Gerotto, C., Giacometti, G. M., Bassi, R. & Morosinotto, T. (2010). Physcomitrella patens mutants affected on heat dissipation clarify the evolution of photoprotection mechanisms upon land colonization. Proc Natl Acad Sci U S A, 107 (24), 11128-33. doi: 10.1073/pnas.1002873107.
[35] Niyogi, K. K. & Truong, T. B. (2013). Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol, 16 (3), 307-14. doi: 10.1016/j.pbi.2013.03.011.
[36] Pinnola, A. (2019). The rise and fall of Light-Harvesting Complex Stress-Related proteins as photoprotection agents during evolution. J Exp Bot, 70 (20), 5527-5535. doi: 10.1093/jxb/erz317.
[37] Bergner, S. V., Scholz, M., Trompelt, K., Barth, J., Gäbelein, P., Steinbeck, J., Xue, H., Clowez, S., Fucile, G., Goldschmidt-Clermont, M., Fufezan, C. & Hippler, M. (2015). STATE TRANSITION7-Dependent Phosphorylation Is Modulated by Changing Environmental Conditions, and Its Absence Triggers Remodeling of Photosynthetic Protein Complexes. Plant Physiol, 168 (2), 615-34. doi: 10.1104/pp.15.00072.
[38] Allorent, G., Tokutsu, R., Roach, T., Peers, G., Cardol, P., Girard-Bascou, J., Seigneurin-Berny, D., Petroutsos, D., Kuntz, M., Breyton, C., Franck, F., Wollman, F. A., Niyogi, K. K., Krieger-Liszkay, A., Minagawa, J. & Finazzi, G. (2013). A dual strategy to cope with high light in Chlamydomonas reinhardtii. Plant Cell, 25 (2), 545-57. doi: 10.1105/tpc.112.108274.
[39] de la Cruz Valbuena, G., F, V. A. C., Borrego-Varillas, R., Perozeni, F., D'Andrea, C., Ballottari, M. & Cerullo, G. (2019). Molecular Mechanisms of Nonphotochemical Quenching in the LHCSR3 Protein of Chlamydomonas reinhardtii. J Phys Chem Lett, 10 (10), 2500-2505. doi: 10.1021/acs.jpclett.9b01184.
[40] Tokutsu, R. & Minagawa, J. (2013). Energy-dissipative supercomplex of photosystem II associated with LHCSR3 in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 110 (24), 10016-21. doi: 10.1073/pnas.1222606110.
[41] Perozeni, F., Cazzaniga, S. & Ballottari, M. (2019). In vitro and in vivo investigation of chlorophyll binding sites involved in non-photochemical quenching in Chlamydomonas reinhardtii. Plant Cell Environ, 42 (8), 2522-2535. doi: 10.1111/pce.13566.
[42] Pinnola, A., Ballottari, M., Bargigia, I., Alcocer, M., D'Andrea, C., Cerullo, G. & Bassi, R. (2017). Functional modulation of LHCSR1 protein from Physcomitrella patens by zeaxanthin binding and low pH. Sci Rep, 7 (1), 11158. doi: 10.1038/s41598-017-11101-7.
[43] Joliot, P. A. & Finazzi, G. (2010). Proton equilibration in the chloroplast modulates multiphasic kinetics of nonphotochemical quenching of fluorescence in plants. Proc Natl Acad Sci U S A, 107 (28), 12728-33. doi: 10.1073/pnas.1006399107.
[44] Liguori, N., Roy, L. M., Opacic, M., Durand, G. & Croce, R. (2013). Regulation of light harvesting in the green alga Chlamydomonas reinhardtii: the C-terminus of LHCSR is the knob of a dimmer switch. J Am Chem Soc, 135 (49), 18339-42. doi: 10.1021/ja4107463.
[45] Girolomoni, L., Ferrante, P., Berteotti, S., Giuliano, G., Bassi, R. & Ballottari, M. (2017). The function of LHCBM4/6/8 antenna proteins in Chlamydomonas reinhardtii. J Exp Bot, 68 (3), 627-641. doi: 10.1093/jxb/erw462.
[46] Girolomoni, L., Cazzaniga, S., Pinnola, A., Perozeni, F., Ballottari, M. & Bassi, R. (2019). LHCSR3 is a nonphotochemical quencher of both photosystems in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 116 (10), 4212-4217. doi: 10.1073/pnas.1809812116.
[47] Pinnola, A., Cazzaniga, S., Alboresi, A., Nevo, R., Levin-Zaidman, S., Reich, Z. & Bassi, R. (2015). Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens. Plant Cell, 27 (11), 3213-27. doi: 10.1105/tpc.15.00443.
[48] Ferrante, P., Ballottari, M., Bonente, G., Giuliano, G. & Bassi, R. (2012). LHCBM1 and LHCBM2/7 polypeptides, components of major LHCII complex, have distinct functional roles in photosynthetic antenna system of Chlamydomonas reinhardtii. J Biol Chem, 287 (20), 16276-88. doi: 10.1074/jbc.M111.316729.
[49] Semchonok, D. A., Sathish Yadav, K. N., Xu, P., Drop, B., Croce, R. & Boekema, E. J. (2017). Interaction between the photoprotective protein LHCSR3 and C(2)S(2) Photosystem II supercomplex in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg, 1858 (5), 379-385. doi: 10.1016/j.bbabio.2017.02.015.
[50] Elrad, D., Niyogi, K. K. & Grossman, A. R. (2002). A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell, 14 (8), 1801-16. doi: 10.1105/tpc.002154.
[51] Dang, K. V., Plet, J., Tolleter, D., Jokel, M., Cuiné, S., Carrier, P., Auroy, P., Richaud, P., Johnson, X., Alric, J., Allahverdiyeva, Y. & Peltier, G. (2014). Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell, 26 (7), 3036-50. doi: 10.1105/tpc.114.126375.
[52] Barera, S., Dall'Osto, L. & Bassi, R. (2021). Effect of lhcsr gene dosage on oxidative stress and light use efficiency by Chlamydomonas reinhardtii cultures. J Biotechnol, 328 (12-22). doi: 10.1016/j.jbiotec.2020.12.023.
[53] Cantrell, M. & Peers, G. (2017). A mutant of Chlamydomonas without LHCSR maintains high rates of photosynthesis, but has reduced cell division rates in sinusoidal light conditions. PLoS One, 12 (6), e0179395. doi: 10.1371/journal.pone.0179395.
[54] Allorent, G., Lefebvre-Legendre, L., Chappuis, R., Kuntz, M., Truong, T. B., Niyogi, K. K., Ulm, R. & Goldschmidt-Clermont, M. (2016). UV-B photoreceptor-mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 113 (51), 14864-14869. doi: 10.1073/pnas.1607695114.
[55] Petroutsos, D., Tokutsu, R., Maruyama, S., Flori, S., Greiner, A., Magneschi, L., Cusant, L., Kottke, T., Mittag, M., Hegemann, P., Finazzi, G. & Minagawa, J. (2016). A blue-light photoreceptor mediates the feedback regulation of photosynthesis. Nature, 537 (7621), 563-566. doi: 10.1038/nature19358.
[56] Tilbrook, K., Dubois, M., Crocco, C. D., Yin, R., Chappuis, R., Allorent, G., Schmid-Siegert, E., Goldschmidt-Clermont, M. & Ulm, R. (2016). UV-B Perception and Acclimation in Chlamydomonas reinhardtii. Plant Cell, 28 (4), 966-83. doi: 10.1105/tpc.15.00287.
[57] Petroutsos, D., Busch, A., Janssen, I., Trompelt, K., Bergner, S. V., Weinl, S., Holtkamp, M., Karst, U., Kudla, J. & Hippler, M. (2011). The chloroplast calcium sensor CAS is required for photoacclimation in Chlamydomonas reinhardtii. Plant Cell, 23 (8), 2950-63. doi: 10.1105/tpc.111.087973.
[58] Dinc, E., Tian, L., Roy, L. M., Roth, R., Goodenough, U. & Croce, R. (2016). LHCSR1 induces a fast and reversible pH-dependent fluorescence quenching in LHCII in Chlamydomonas reinhardtii cells. Proc Natl Acad Sci U S A, 113 (27), 7673-8. doi: 10.1073/pnas.1605380113.
[59] Kosuge, K., Tokutsu, R., Kim, E., Akimoto, S., Yokono, M., Ueno, Y. & Minagawa, J. (2018). LHCSR1-dependent fluorescence quenching is mediated by excitation energy transfer from LHCII to photosystem I in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A, 115 (14), 3722-3727. doi: 10.1073/pnas.1720574115.
[60] Serrano, G., Herrera-Palau, R., Romero, J. M., Serrano, A., Coupland, G. & Valverde, F. (2009). Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol, 19 (5), 359-68. doi: 10.1016/j.cub.2009.01.044.
[61] Gabilly, S. T., Baker, C. R., Wakao, S., Crisanto, T., Guan, K., Bi, K., Guiet, E., Guadagno, C. R. & Niyogi, K. K. (2019). Regulation of photoprotection gene expression in Chlamydomonas by a putative E3 ubiquitin ligase complex and a homolog of CONSTANS. Proc Natl Acad Sci U S A, 116 (35), 17556-17562. doi: 10.1073/pnas.1821689116.
[62] Aihara, Y., Fujimura-Kamada, K., Yamasaki, T. & Minagawa, J. (2019). Algal photoprotection is regulated by the E3 ligase CUL4-DDB1 (DET1). Nat Plants, 5 (1), 34-40. doi: 10.1038/s41477-018-0332-5.
[63] Lau, O. S. & Deng, X. W. (2012). The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci, 17 (10), 584-93. doi: 10.1016/j.tplants.2012.05.004.
[64] Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M. J., Benvenuto, G., Bowler, C., Genschik, P. & Hellmann, H. (2006). CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J, 47 (4), 591-603. doi: 10.1111/j.1365-313X.2006.02810.x.
[65] Chen, H., Shen, Y., Tang, X., Yu, L., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N. & Deng, X. W. (2006). Arabidopsis CULLIN4 Forms an E3 Ubiquitin Ligase with RBX1 and the CDD Complex in Mediating Light Control of Development. Plant Cell, 18 (8), 1991-2004. doi: 10.1105/tpc.106.043224.
[66] Engelken, J., Brinkmann, H. & Adamska, I. (2010). Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol Biol, 10 (233). doi: 10.1186/1471-2148-10-233.
[67] Price, D. C., Chan, C. X., Yoon, H. S., Yang, E. C., Qiu, H., Weber, A. P., Schwacke, R., Gross, J., Blouin, N. A., Lane, C., Reyes-Prieto, A., Durnford, D. G., Neilson, J. A., Lang, B. F., Burger, G., Steiner, J. M., Löffelhardt, W., Meuser, J. E., Posewitz, M. C., Ball, S., Arias, M. C., Henrissat, B., Coutinho, P. M., Rensing, S. A., Symeonidi, A., Doddapaneni, H., Green, B. R., Rajah, V. D., Boore, J. & Bhattacharya, D. (2012). Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants. Science, 335 (6070), 843-7. doi: 10.1126/science.1213561.
[68] Pan, H., Slapeta, J., Carter, D. & Chen, M. (2012). Phylogenetic analysis of the light-harvesting system in Chromera velia. Photosynth Res, 111 (1-2), 19-28. doi: 10.1007/s11120-011-9710-9.
[69] Boldt, L., Yellowlees, D. & Leggat, W. (2012). Hyperdiversity of genes encoding integral light-harvesting proteins in the dinoflagellate Symbiodinium sp. PLoS One, 7 (10), e47456. doi: 10.1371/journal.pone.0047456.
[70] Dittami, S. M., Michel, G., Collén, J., Boyen, C. & Tonon, T. (2010). Chlorophyll-binding proteins revisited--a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol, 10 (365). doi: 10.1186/1471-2148-10-365.
[71] Koziol, A. G., Borza, T., Ishida, K., Keeling, P., Lee, R. W. & Durnford, D. G. (2007). Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol, 143 (4), 1802-16. doi: 10.1104/pp.106.092536.
[72] Frommolt, R., Werner, S., Paulsen, H., Goss, R., Wilhelm, C., Zauner, S., Maier, U. G., Grossman, A. R., Bhattacharya, D. & Lohr, M. (2008). Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol, 25 (12), 2653-67. doi: 10.1093/molbev/msn206.
[73] Hoffman, G. E., Sanchez Puerta, M. V. & Delwiche, C. F. (2011). Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol Biol, 11 (101). doi: 10.1186/1471-2148-11-101.
[74] Vieler, A., Wu, G., Tsai, C. H., Bullard, B., Cornish, A. J., Harvey, C., Reca, I. B., Thornburg, C., Achawanantakun, R., Buehl, C. J., Campbell, M. S., Cavalier, D., Childs, K. L., Clark, T. J., Deshpande, R., Erickson, E., Armenia Ferguson, A., Handee, W., Kong, Q., Li, X., Liu, B., Lundback, S., Peng, C., Roston, R. L., Sanjaya, Simpson, J. P., Terbush, A., Warakanont, J., Zäuner, S., Farre, E. M., Hegg, E. L., Jiang, N., Kuo, M. H., Lu, Y., Niyogi, K. K., Ohlrogge, J., Osteryoung, K. W., Shachar-Hill, Y., Sears, B. B., Sun, Y., Takahashi, H., Yandell, M., Shiu, S. H. & Benning, C. (2012). Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet, 8 (11), e1003064. doi: 10.1371/journal.pgen.1003064.
[75] Suorsa, M., Rantala, M., Danielsson, R., Järvi, S., Paakkarinen, V., Schröder, W. P., Styring, S., Mamedov, F. & Aro, E. M. (2014). Dark-adapted spinach thylakoid protein heterogeneity offers insights into the photosystem II repair cycle. Biochim Biophys Acta, 1837 (9), 1463-71. doi: 10.1016/j.bbabio.2013.11.014.
[76] Amarnath, K., Bennett, D. I., Schneider, A. R. & Fleming, G. R. (2016). Multiscale model of light harvesting by photosystem II in plants. Proc Natl Acad Sci U S A, 113 (5), 1156-61. doi: 10.1073/pnas.1524999113.
[77] Pinnola, A. & Bassi, R. (2018). Molecular mechanisms involved in plant photoprotection. Biochem Soc Trans, 46 (2), 467-482. doi: 10.1042/bst20170307.
[78] Bos, I., Bland, K. M., Tian, L., Croce, R., Frankel, L. K., van Amerongen, H., Bricker, T. M. & Wientjes, E. (2017). Multiple LHCII antennae can transfer energy efficiently to a single Photosystem I. Biochim Biophys Acta Bioenerg, 1858 (5), 371-378. doi: 10.1016/j.bbabio.2017.02.012.
[79] Ballaré, C. L. & Pierik, R. (2017). The shade-avoidance syndrome: multiple signals and ecological consequences. Plant Cell Environ, 40 (11), 2530-2543. doi: 10.1111/pce.12914.
[80] Tian, Y., Sacharz, J., Ware, M. A., Zhang, H. & Ruban, A. V. (2017). Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. J Exp Bot, 68 (15), 4249-4262. doi: 10.1093/jxb/erx213.
[81] Johnson, M. P., Goral, T. K., Duffy, C. D., Brain, A. P., Mullineaux, C. W. & Ruban, A. V. (2011). Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell, 23 (4), 1468-79. doi: 10.1105/tpc.110.081646.
[82] Dall'Osto, L., Caffarri, S. & Bassi, R. (2005). A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell, 17.(4), 1217-32. doi: 10.1105/tpc.104.030601.
[83] Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K. & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354 (6314), 857-861. doi: 10.1126/science.aai8878.
[84] Perozeni, F., Stella, G. R. & Ballottari, M. (2018). LHCSR Expression under HSP70/RBCS2 Promoter as a Strategy to Increase Productivity in Microalgae. Int J Mol Sci, 19 (1), doi: 10.3390/ijms19010155.
[85] Chaux, F., Johnson, X., Auroy, P., Beyly-Adriano, A., Te, I., Cuiné, S. & Peltier, G. (2017). PGRL1 and LHCSR3 Compensate for Each Other in Controlling Photosynthesis and Avoiding Photosystem I Photoinhibition during High Light Acclimation of Chlamydomonas Cells. Mol Plant, 10 (1), 216-218. doi: 10.1016/j.molp.2016.09.005.
[86] Li, X. P., Phippard, A., Pasari, J. & Niyogi, K. K. (2002). Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct Plant Biol, 29 (10), 1131-1139. doi: 10.1071/fp02065.
[87] Dominici, P., Caffarri, S., Armenante, F., Ceoldo, S., Crimi, M. & Bassi, R. (2002). Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J Biol Chem, 277 (25), 22750-8. doi: 10.1074/jbc.M200604200.
[88] Fan, M., Li, M., Liu, Z., Cao, P., Pan, X., Zhang, H., Zhao, X., Zhang, J. & Chang, W. (2015). Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol, 22 (9), 729-35. doi: 10.1038/nsmb.3068.
[89] Redekop, P., Rothhausen, N., Rothhausen, N., Melzer, M., Mosebach, L., Dülger, E., Bovdilova, A., Caffarri, S., Hippler, M. & Jahns, P. (2020). PsbS contributes to photoprotection in Chlamydomonas reinhardtii independently of energy dissipation. Biochim Biophys Acta Bioenerg, 1861 (5-6), 148183. doi: 10.1016/j.bbabio.2020.148183.
[90] Pinnola, A., Ghin, L., Gecchele, E., Merlin, M., Alboresi, A., Avesani, L., Pezzotti, M., Capaldi, S., Cazzaniga, S. & Bassi, R. (2015). Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp. J Biol Chem, 290 (40), 24340-54. doi: 10.1074/jbc.M115.668798.
[91] Dikaios, I., Schiphorst, C., Dall'Osto, L., Alboresi, A., Bassi, R. & Pinnola, A. (2019). Functional analysis of LHCSR1, a protein catalyzing NPQ in mosses, by heterologous expression in Arabidopsis thaliana. Photosynth Res, 142 (3), 249-264. doi: 10.1007/s11120-019-00656-3.
Cite This Article
  • APA Style

    Menglin Shi, Lin Zhou, Meijie Cui, Tongling Ge, Fangjian Chen, et al. (2022). Roles of Light-Harvesting Complex Stress-Related Proteins in the Stress Responses of Chlamydomonas. Journal of Plant Sciences, 10(1), 1-11. https://doi.org/10.11648/j.jps.20221001.11

    Copy | Download

    ACS Style

    Menglin Shi; Lin Zhou; Meijie Cui; Tongling Ge; Fangjian Chen, et al. Roles of Light-Harvesting Complex Stress-Related Proteins in the Stress Responses of Chlamydomonas. J. Plant Sci. 2022, 10(1), 1-11. doi: 10.11648/j.jps.20221001.11

    Copy | Download

    AMA Style

    Menglin Shi, Lin Zhou, Meijie Cui, Tongling Ge, Fangjian Chen, et al. Roles of Light-Harvesting Complex Stress-Related Proteins in the Stress Responses of Chlamydomonas. J Plant Sci. 2022;10(1):1-11. doi: 10.11648/j.jps.20221001.11

    Copy | Download

  • @article{10.11648/j.jps.20221001.11,
      author = {Menglin Shi and Lin Zhou and Meijie Cui and Tongling Ge and Fangjian Chen and Lei Zhao},
      title = {Roles of Light-Harvesting Complex Stress-Related Proteins in the Stress Responses of Chlamydomonas},
      journal = {Journal of Plant Sciences},
      volume = {10},
      number = {1},
      pages = {1-11},
      doi = {10.11648/j.jps.20221001.11},
      url = {https://doi.org/10.11648/j.jps.20221001.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jps.20221001.11},
      abstract = {Light is very important for photosynthesis in plants. However, excess light can result in photodamage to the photosynthetic apparatus. Via nonphotochemical quenching (NPQ), the oxidative stress caused by excess light energy can be counteracted by photoprotective mechanisms that evolve photosynthetic/oxygenic organisms. Energy-dependent quenching (qE), as the major NPQ component, relies on the accumulation of specific proteins that are termed light-harvesting complex stress-related (LHCSR) proteins in microalgae and mosses. LHCSRs have been reported to participate in adaptation to diverse environmental stresses, including excess light. In this review, we discuss the identification of LHCSRs in Chlamydomonas and the basic biochemical properties and functions of LHCSRs in acclimation to environmental stresses such as excess light and salt stress. We further review the potential interactive factors and upstream regulators of LHCSRs in Chlamydomonas, aiming to explore the underlying mechanism of LHCSRs in adaptation to multiple environmental stresses. We also discuss the evolution of LHCSRs in green algae and mosses and tentatively speculate about their participation in the adaptation to environmental change of the Earth. Work on Chlamydomonas LHCSR could provide clues to analyze the roles of LHCSR in both green algae and mosses. Thus, we offer an overview of current knowledge on the characteristics and functions of Chlamydomonas LHCSRs, which could shed new light on their detailed studies in both green algae and moss in the future.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Roles of Light-Harvesting Complex Stress-Related Proteins in the Stress Responses of Chlamydomonas
    AU  - Menglin Shi
    AU  - Lin Zhou
    AU  - Meijie Cui
    AU  - Tongling Ge
    AU  - Fangjian Chen
    AU  - Lei Zhao
    Y1  - 2022/01/08
    PY  - 2022
    N1  - https://doi.org/10.11648/j.jps.20221001.11
    DO  - 10.11648/j.jps.20221001.11
    T2  - Journal of Plant Sciences
    JF  - Journal of Plant Sciences
    JO  - Journal of Plant Sciences
    SP  - 1
    EP  - 11
    PB  - Science Publishing Group
    SN  - 2331-0731
    UR  - https://doi.org/10.11648/j.jps.20221001.11
    AB  - Light is very important for photosynthesis in plants. However, excess light can result in photodamage to the photosynthetic apparatus. Via nonphotochemical quenching (NPQ), the oxidative stress caused by excess light energy can be counteracted by photoprotective mechanisms that evolve photosynthetic/oxygenic organisms. Energy-dependent quenching (qE), as the major NPQ component, relies on the accumulation of specific proteins that are termed light-harvesting complex stress-related (LHCSR) proteins in microalgae and mosses. LHCSRs have been reported to participate in adaptation to diverse environmental stresses, including excess light. In this review, we discuss the identification of LHCSRs in Chlamydomonas and the basic biochemical properties and functions of LHCSRs in acclimation to environmental stresses such as excess light and salt stress. We further review the potential interactive factors and upstream regulators of LHCSRs in Chlamydomonas, aiming to explore the underlying mechanism of LHCSRs in adaptation to multiple environmental stresses. We also discuss the evolution of LHCSRs in green algae and mosses and tentatively speculate about their participation in the adaptation to environmental change of the Earth. Work on Chlamydomonas LHCSR could provide clues to analyze the roles of LHCSR in both green algae and mosses. Thus, we offer an overview of current knowledge on the characteristics and functions of Chlamydomonas LHCSRs, which could shed new light on their detailed studies in both green algae and moss in the future.
    VL  - 10
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

  • Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

  • Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

  • Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

  • Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

  • Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China

  • Sections