Volume 1, Issue 1, December 2016, Page: 33-41
Adaptive Fuzzy Sliding Modes Observer for Phenol Biodegradation
Marco Antonio Márquez-Vera, Department of Mechatronics, Politechnic University of Pachuca, Zempoala, Mexico
Julo César Ramos-Fernández, Department of Mechatronics, Politechnic University of Pachuca, Zempoala, Mexico
Blanca Diana Balderrama-Hernández, Basic Education, Secretariat of Public Education, Pachuca, Mexico
Received: Dec. 6, 2016;       Accepted: Jan. 6, 2017;       Published: Jan. 31, 2017
DOI: 10.11648/j.mlr.20160101.14      View  2248      Downloads  75
Abstract
There exist processes difficult to control as the chemical ones, in this work the bacterial grow rate in a biotechnological process is controlled, to make it, a fuzzy model was proposed, this control uses the clustering technique to improve the membership functions for the antecedents rules and least squares for the consequents; the control work in an acceptable manner, but in practice it is common to find that the actuators cannot respond to the signal control due saturation or its frequency response; so, a predictive control was used to anticipate the control signal. A comparative Table shows the comparison between different control horizons. Finally the use of a model reference can reduce the control signal amplitude and reduce some criterion errors.
Keywords
Fuzzy Logic, Observers Design Sliding Modes, Biodegradation
To cite this article
Marco Antonio Márquez-Vera, Julo César Ramos-Fernández, Blanca Diana Balderrama-Hernández, Adaptive Fuzzy Sliding Modes Observer for Phenol Biodegradation, Machine Learning Research. Vol. 1, No. 1, 2016, pp. 33-41. doi: 10.11648/j.mlr.20160101.14
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
A. Aceves, Usos y Abusos de la Lógica Difusa para el Control de Procesos: Una Alternativa para Modelar lo Incompleto de la Información y lo Impreciso de una Observación, Proc. Conf. Of Con Mantenimiento Productivo, Mexico. (2001) pp. 12-17.
[2]
K. Astrom, B. Wittenmark, Adaptive Control. Pearson Education. India, 2006.
[3]
K. Astrom, T. Hagglund, Advanced PID Control. Instrumentation, Systems, and Automation Society. United States of America, 2006.
[4]
R. Babuska, Fuzzy Modeling for Control. In Dr. Hans-Jurgen Zimmermann (Ed). International Series in Intelligemt Technologies, Aachen, Germany, 1998.
[5]
O. Bernard, G. Sallet, A. Sciandra, Nonlinear Observers for a class of Biological Systems: Applications to Validation of a Phytoplanktonic Growth Model. IEEE Transactions on Automatic Control, 43 (8) (1998) 1056-1065.
[6]
Z. Bien and J. Xu, Iterative Learning Control: Analysis, Design, Integration and Applications. Kluwer Academic Publishers, Massachusetts, 2008.
[7]
S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Society for Industrial ans Applied Mathematics. Philadelphia, 1994.
[8]
O. Castillo, P. Melin, Type-2 Fuzzy Logic: Theory and Applications. Studies in Fuzzyness and Soft Computing 223, Springer, 2008.
[9]
I. Dunn, E. Heinzle, J. Ingham, J. Prenosil, Biological Reaction Engineering. Wiley-VCH Verlag GmbH, Germany. 2003.
[10]
C. Feudjio. P. Bogaerts, J. S. Deschenes, A. V. Wouwer, Design of a robust Lipschitz observer-application to monitoring of culture of micro-algae Scenesdesmus obliquus. IFAC-PapersOnLine. 49 (7) (2016) 1056-1061.
[11]
J. M. Guadayol. Control, Instrumentación y Automatización de Procesos Químicos: Problemas. Ediciones de la Universidad Politécnica de Cataluña, Barcelona, 1999.
[12]
Q. P. Ha, Q. H. Nguyen, D. C. Rye, Fuzzy Sliding-Mode Controllers with Applications. IEEE Transactions on Industrial Electronics, 48 (1) (2001) 38-46.
[13]
N. Karnik, J. Mendel, Q. Liang, Type-2 Fuzzy Logic Systems, IEEE Transactions on Fuzzy Systems. 7 (6) (1999) 643-658.
[14]
B. Kuo. Sistemas de Control Digital. Compañía Editorial Continental. Mexico, 2003.
[15]
Z. Lendek, T. Guerra, R. Babuska, B. De Schutter. Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models. Studies in Fuzziness and Soft Computing. Springer. India, 2010.
[16]
M. J. Lin, F. Luo, Adaptive neural control of the dissolved oxygen concentration in WWTPs based on disturbance observer. Neurocomputing. 185 (2016) 133-141.
[17]
R. Marino, P. Tomei, Adaptive Observers with Arbitrary Exponential Rate of Convergence for Nonlinear Systems. IEEE Transactions on Automatic Control. 40 (7) (1995) 1300-1304.
[18]
M. A. Márquez, C. Ben-Youssef, G. Vázquez, J. Waissman, Iterative Learning Control of a SBR Reactor by using a Limited Number of Samples, Proc. Conf. of 2nd International Meeting on Environmental Biotechnology and Engineering, D. F. Mexico 2006 pp. 81-89.
[19]
M. A. Márquez, J. Waissman, O. Gutú, Fuzzy Model Based Iterative Learning Control for Phenol Biodegradation. P. Melin et al. (Eds), Foundations on Fuzzy Logic and Soft Computing, Lecture Notes in Artificial Intelligence 4529, 2007, pp. 328-337.
[20]
J. M. Mendel, R. I. John, Liu, Interval Type-2 Fuzzy logic Systems Made Simple, IEEE Transactions on Fuzzy systems. 14 (6) (2006) 535-550.
[21]
O. Montiel, O. Castillo, P. Melin, R. Sepúlveda. Improving the Human Evolutionary Model: An Intelligent Optimization Method. International Mathematical Forum. 2 (1) (2007) 21-44.
[22]
F. Muñoz, C. Ben-Youssef, Biomass and Phenol Estimation using Dissolved Oxygen Measurement, Proc. Conf. of Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca, Mexico, 2006.
[23]
H. Nguyen, N. Prasad, C. Walker, E. Walker, A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC. Florida, 2003.
[24]
S. Nuñez, H. De Battista, F. Garelli, A. Vignoni, J. Picó, Second-order sliding mode observer for multiple kinetic rates estimation in bioprocesses. Control Engineering Practice. 21 (2013) 1259-1265.
[25]
S. Nuñez, F. Garelli, H. De Battista, Product-based sliding mode observer for biomass and rate estimation in Luedeking-Piret like processes. Chemical Engineering Research and Design. 105 (2016) 24-30.
[26]
K. Passino, S. Yurkovich, Fuzzy Control. Addison Wesley Longman Inc. California, 1998.
[27]
T. Ross, Fuzzy Logic with Engineering Applications, John Wiley & Sons, Ltd, West Sussex, 2008.
[28]
A. Tayebi, J. Xu, Observer-Based Iterative Learning Control for a Class of Time-Varying Nonlinear Systems, IEEE Transactions on Circuits and Systems, 50 (3) (2003) 452-455.
[29]
M. Teixeira, E. Assunçao, R. Avellar,On Relaxed LMI-Based Designs for Fuzzy Regulators and Fuzzy Observers. IEEE Transactions on Fuzzy Systems, 11 (5) (2003) 613-623.
[30]
D. Theilliol, J. C. Ponsart, J. Harmand, C. Join, P. Gras, On-line Estimator of unmeasured Inputs for Anaerobic Wastewater Treatment Process. Control Engineering Practice, 11 (2003) 1007-1019.
[31]
G. Vázquez, C. Ben-Youssef, J. Waissman, Two Step Modelling of the Biodegradation of Phenol by an Acclimated Activated Sludge, Chemical Engineering Jornal 117 (3) (2006) 245-252.
[32]
W. Y. Wang, M. L. Chan, C. C. James, T. T. Lee, H∞ Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems via and Adaptive Fuzzy-Neural Approach. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 32 (4) (2002) 483-492.
Browse journals by subject